Telegram Group & Telegram Channel
Опишите процесс предобработки видеоданных для их использования в ML-моделях

🔹Предобработка на уровне кадров

Этапы предобработки видеоданных на уровне отдельных кадров включают:
▪️Сэмплирование, то есть выборка ключевых кадров для сокращения объёма данных.
▪️Приведение всех кадров к одинаковому размеру.
▪️Масштабирование и нормализация, то есть корректировка значений пикселей. Чаще всего нормализация осуществляется для приведения значений к диапазону [0, 1] или [-1, 1].

🔹Видеоэнкодеры

▪️Обработка видео целиком — с помощью 3D-свёрточных сетей (3D-CNN) или трансформеров. Эти модели захватывают как пространственные, так и временные зависимости между кадрами. Такой метод более ресурсоёмкий, но позволяет модели лучше улавливать динамику видеоряда.
▪️Обработка отдельных кадров — каждый кадр обрабатывается отдельно для получения эмбеддингов, которые затем агрегируются (например, с помощью усреднения или рекуррентных сетей). Этот подход быстрее, но может потерять часть информации о временных зависимостях.

#машинное_обучение



tg-me.com/ds_interview_lib/607
Create:
Last Update:

Опишите процесс предобработки видеоданных для их использования в ML-моделях

🔹Предобработка на уровне кадров

Этапы предобработки видеоданных на уровне отдельных кадров включают:
▪️Сэмплирование, то есть выборка ключевых кадров для сокращения объёма данных.
▪️Приведение всех кадров к одинаковому размеру.
▪️Масштабирование и нормализация, то есть корректировка значений пикселей. Чаще всего нормализация осуществляется для приведения значений к диапазону [0, 1] или [-1, 1].

🔹Видеоэнкодеры

▪️Обработка видео целиком — с помощью 3D-свёрточных сетей (3D-CNN) или трансформеров. Эти модели захватывают как пространственные, так и временные зависимости между кадрами. Такой метод более ресурсоёмкий, но позволяет модели лучше улавливать динамику видеоряда.
▪️Обработка отдельных кадров — каждый кадр обрабатывается отдельно для получения эмбеддингов, которые затем агрегируются (например, с помощью усреднения или рекуррентных сетей). Этот подход быстрее, но может потерять часть информации о временных зависимостях.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/607

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

Why Telegram?

Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.

Библиотека собеса по Data Science | вопросы с собеседований from ar


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA